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Abstract 

In financial risk management, the expected shortfall is a popular risk measure which is often 

considered as an alternative to Value-at-Risk. It is defined as the conditional expected loss given 

that the loss is greater than a given Value-at-Risk (quantile). In this paper at hand, we have 

proposed a new method to compute nonparametric prediction bands for Conditional Expected 

Shortfall for returns that admits a location-scale model. Where the location (mean) function and 

scale (variance) function are smooth, the error term is unknown and assumed to be uncorrelated 

to the independent variable (lagged returns). The prediction bands yield a relatively small width, 

indicating good performance as depicted in the literature. Hence, the prediction bands are good 

especially when the returns are assumed to have a location-scale model. 

Keywords: Bootstrap, Expected Shortfall, Location-Scale Model, Nonparametric Prediction 

Intervals, Value-at-Risk 

INTRODUCTION 

Expected Shortfall (ES) is often used in portfolio risk measurement, risk capital allocation and 

performance attribution. Value-at-Risk (VaR) is defined as the conditional quantile of the 

portfolio loss distribution for a given horizon (it could be a day or a week) and for a given 

coverage rate (for instance 0.01 or 0.05), and the ES is simply defined as the expected loss 

beyond the VaR. Thus, VaR and ES measures are clear expressions about the left tail of the 

return distribution. 

The concept of bootstrapping hangs on the idea that the probability distribution function of the 

data set available is unknown.  

Therefore, the problem of constructing nonparametric prediction bands for Conditional Expected 

Shortfall (CES) where the returns are assumed to have a location-scale model with 

heteroscedasticity, and also distribution of the error term is assumed unknown using bootstrap 

method is of interest in this paper. 

The Nonparametric Predictive Intervals (NPIs) for Conditional Expected Shortfall 

Definition 1: α − mixing (Strong mixing) 
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Let  be the σ − algebra of events generated by {Yi,k ≤ i ≤ l} for l > k. The α − mixing 

coefficient introduced by [4] is defined as 

 α(k) = sup |P(AB) − P(A)P(B)|. 

A∈F1i,B∈Fi∞+k 

The series is said to be α − mixing if 

lim α(k) = 0. 

k→∞ 

The dependence described by the α − mixing is the weakest as it is implied by other types of 

mixing. 

In this paper, we assumed that the sequence {Yt} satisfies a certain weak dependence condition, 

the concept of strong mixing coefficients by [4] as defined above. We further assumed that 

returns considered here, Yt, admit a location-scale representation given as 

  (1) 

where m and h > 0 are nonparametric functions defined on the range of  is independent of 

Xt, and t is an independent and identically distributed (iid) innovation process with E

 and the unknown distribution function F. 

From equation (1) we have 

 CV aR(X)τ := QY |X(τ|x) = m(Xt) + 
p
h(Xt)q(τ) (2) 

where QY |X(τ|x) is the conditional τ−quantile associated with  

is the τ−quantile associated with the error distribution F. The estimator of (2) and its properties 

has been studied in [6], and 

 

Estimation of m(X) and h(X) in equations (2) and (3) was studied by [1] and [2]. For estimation 

of the error term, see our paper for more [7] details. 

With estimators of the mean function m(X), the variance function h(X) and the unknown error 

distribution, the estimator for Conditional Value-at-Risk (CVaR), discussed in [6] is given as 

 CV aR\ (x)τ := QˆY |X(τ|x) = mˆ(x) + h
ˆ1/2

(x)qˆ(τ) (4) 

therefore, the estimator for Conditional Expected Shortfall is 

 

The mean and variance of the estimator (5) as discussed in [5] are as follows: 
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E  

(6) 

So that, 

  (7) 

and 

 

=⇒ CES[(x)τ →−
d 

CES(X)τ, and by central limit theorem we have: 

  (9) 

Pivotal quantity (Pivot) 

Def: Let X = (X1,...,Xn) be random variables with unknown joint distribution F, and let θ(F) 

denote a real-valued parameter. A random variable Q(X,θ(F)) is a pivot if the distribution of 

Q(X,θ(F)) is independent of all parameters. That is, X ∼ F(x|θ(F)), then Q(X,θ(F)) has the same 

distribution ∀θ(F), see [8]. 

Consider the function estimator CES[(x)τ in (5), the asymptotic distribution of a pivotal quantity 

are used to construct confidence intervals (CIs). Let us defined to be 

the pivotal statistic given as 

  (10) 

where V ar(x)τ is the variance of the function estimator defined in (8). 

Bootstrap Method 

This strategy consists of estimating the distribution of the pivotal quantity given below 

  (11) 

using the bootstrap method. The distribution of (8) was approximated by the distribution of the 

bootstrapped statistics 

h  CES ( x ) τ 
i  m ( x )+  (  t |  t q > ( τ )) h ( x )+ 

b 2 

2 
µ 2 ( k )  m 

0

0 ( x )+  (  t |  t > q ( τ )) h 
0

0 ( x ) 
2  

| z { }   
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  (12) 

where ∗ denotes the bootstrap counterparts of the the estimates. Hence, we have the following 

Nonparametric Prediction Intervals with (1 − τ) asymptotic coverage probability. 

h q ∗ q ∗ i 

 CES[(x)τ − σ
2
(x) + V ard (x)τqˆ(a), CES[(x)τ + σ

2
(x) + V ard (x)τqˆ(b) (13) 

The Algorithm (Bootstrap) 

Generate n data sets from the unknown probability model of the data generation process in (14), 

with independently identically distributed random errors form some unknown probability 

distribution function (pdf) F. 

Calculate mˆ(x) and h
ˆ
(x). 

Generate the sequence of Standardized Nonparametric Residuals (SNR) 

, where 

 , if h
ˆ
(x) > 0 

if h
ˆ
(x) ≤ 0 

and hence compute  and E  

Compute for each process the CES[ ∗(x)j, j = 1,2,...,m 

Compute the average function,  given by: 

 

and the standard error between the curves is: 

 

The lower and upper bounds of the NPIs at level τ are therefore given by 
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where  is the quantile for the standard normal distribution. For instance,

. 

Simulation Study 

To examine the performance of our estimators, we conducted a simulation study considering the 

following data generating location-scale model 

  (14) 

where m(Xt−1) = sin(0.5Xt−1), and

 

Xt and h(t) are set to zero (0) initially, then Xt is generated recursively from (10) above. 

The data generating process was used by [3] and also used by [7]. 

Nonparametric Prediction Intervals for CES 

 Daily Returns plot (Simulated)

  

Time 

Figure 2: Graph showing the 95% Condi- 

Figure 1: Plot of the simulated daily returns 

showing its evolution. 

tional Expected Shortfall in blue color, 

while the Upper and Lower Prediction 

Intervals in red color. 

NPIs 95% CES 

 Ordered 95% CES

  

Time 
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Time 

Figure 3: Graph showing the 

95% ordered Conditional Expected 

Shortfall. 

Figure 4: The red lines in the first and 

second panel shows the upper and lower 

prediction intervals, and the blue lines in 

both cases shows the 95% CES. 

 

The time series plot of the simulated daily returns generated from the data generating process 

(14) is presented in Figure 1. Looking at Figure 2 and Figure 4, the Nonparametric Prediction 

Intervals by bootstrap method for Conditional Expected Shortfall performs well. Clearly, the 

95% CES is contained within the prediction bands. Plotting the ordered 95% CES in Figure 3, it 

shows the distribution of 95% CES over time. We can see that the width of the bands is 

considerably small affirming its good performance, conforming with what is obtainable in the 

literature on prediction intervals. 

 

CONCLUSION 

We proposed Nonparametric Prediction Bands for a conditional Expected Shortfall using 

bootstrap method. Our approach is based on returns on assets or portfolio that have a location-

scale model. Simulation study was conducted and the prediction bands was found to perform 

very good. 
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