

SCHOOL OF PURE AND APPLIED SCIENCES DEPARTMENT OF PHYSICAL SCIENCES FOURTH YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF EDUCATION (SPECIAL NEEDS) BACHELOR OF EDUCATION (SCIENCE) SPH 403: PRACTICAL PHYSICS II

DATE:

TIME:

INSTRUCTIONS:

• Answer ALL the questions.

QUESTION ONE (25 MARKS)

- a) In designing an experiment to determine the specific heat capacity of a liquid using the electrical method, while giving reasons, describe any four assumptions that are made prior to the actual experiment? (10 marks)
- b) A 1.1 kg solid block of copper was used by a student to perform an experiment to determine the specific heat capacity. The readings obtained were as shown in Table 1.

Time (s)	0	1	2	3	4	5	6	7	8	9	10	11	12	14
Tommer (V)	20	20.5	20	21	21.4	22	22.6	22	22.5	247	25.2	25.5	26.5	20
Temperature (K)	29	29.5	30	31	31.4	32	32.6	33	33.5	34.7	35.2	35.5	36.5	38
Energy emitted (J)	0	269	539	811	1066	1350	1610	1890	2158	2420	2690	2958	3234	3756
i. On a graph paper, plot a relevant graph (7 marks)														
ii. Determine the specific heat capacity of Copper								(81	marks)					

Table 1

QUESTION TWO (25 MARKS)

In a "toss-die dice" experiment, the tabulated readings as recorded by students is as shown in Table 2.

Nuclei Dec	ay	Dice decay				
No. of undecayed nuclei	Time taken (hr)	No. of throws	No. of undecayed dice			
1000	0	0	1000			
846	1	1	833			
717	2	2	694			
607	3	3	579			
513	4	4	482			
435	5	5	402			
368	6	6	335			
311	7	7	279			
264	8	8	233			
223	9	9	194			
189	10	10	162			
160	11	11	135			
135	12	12	112			

Table 2

a) Plot separate graphs for the two scenarios	(12 marks)
b) Calculate the half-life of the dice	(5 marks)
c) Calculate the half-life of the nuclei	(4 marks)

d) While giving reasons, discuss the comparisons of values for part (b) and (c) above.

(4 marks)

QUESTION THREE (20 MARKS)- To do an experiment in the laboratory on either vapor pressure of water or specific heat of zinc by methods of mixture